Pickleball Court Lighting - Poles on Court Ends

Poles are located at the ends of the court so the poles and lights do not interrupt the view from the house

Full Cut Off 4000 Kelvin LED Lights Dark Sky Compliant with 3000 Kelvin LEDs** (2) 20' Poles - (2) APTA 480s

Average 32 Footcandles and 1.86 Max/Min Ratio

This photometric study was generated using methods recommended by the Illuminating Engineering Society of North America (IESNA). The calculations in this report are based on data provided by a third party. The accuracy of this report is dependent on the accuracy of the data provided. End user environment and application including but not limited to voltage variation and dirt accumulation can cause actual photometric performance to differ from the performance calculated using the data provided. This report is provided without warranty as to accuracy, completeness, reliability or otherwise. In no event will Access Fixtures be responsible for any loss resulting from use of this report.
** 3000 Kelvin LEDs will result in approximately 6\% reduction in footcandles

Key Points

- A photometric analysis provides a multidimensional simulation of a lighting design engineered to accomplish a application-specific outcome, in this case a pickleball court that meets sporting standards. The criteria for each photometric varies by sport, application, municipal code, safety standard, structural restrictions, and personal preferences. We use llluminating Engineering Society (IES) standards as well as specialist expertise when engineering lighting plans.
- Each sport has different lighting requirements with regard to footcandles, max/min ratio, and the location, height and angle of the fixtures.
- Important Sports Factors
- Footcandles:

Simply put, this is a unit of measurement for the amount of light projected onto a specific surface. More footcandles are required for fast moving sports with small balls such as hockey, tennis, and pickleball because it is more difficult to see the object in motion. Fewer footcandles are required for sports with large and/or slower moving balls such as basketball and bocce ball because it is easier to see the moving object.

- Max/Min:

A measure of how evenly the light is distributed on a specific surface. Lower max/min ratios are required for fast moving sports with small objects. If you have a high max/min ratio with "poor" lighting in one zone and "good" lighting in the other, when the ball is in motion you could lose sight of it when turning your head. Alternatively, if you had "good" light in one zone and "great" light in another, you would still lose track of the ball when trackng from zone to zone. The reason for this is because, regardless of how many footcandles of light there are, if there is a contrast between two areas, your pupils will dilate and you can lose sight of your target.

- Pole and fixture height, location and angles:

These factors vary based on the direction the light needs to be projected toward or restricted from as well as the game style, player body mechanics, and glare that may interfere with a players ability to perform. If a sport requires that a player look upward, directly into the lighting fixture, they will experience discomfort due to glare and will be unable to play properly if light is not diffused.

- Lighting Factors

- Kelvin:

This is a measure of the color "warmth". Most applications use between 3000k-5000k.

- Optics:

There are many types of optics that project light in unimaginable ways. Sometimes its spherical, other times it's tubular, other times it is oblong. Furthermore, optics dictate the directions in which light is cast to ensure it's hitting the correct areas efficiently and without excessive light trespass.

Footcandle Factors: Distance from light source, angle, optics, wattage, and kelvin.

This shows how optics change the number of footcandles on the floor. It also shows how optics affect light distribution. You needed specialized optics to achieve the fc and Max/Min ratio presented in this photometric study.
Residential Pickleball Court
Project Cover 1
Table of contents 2
Luminaire parts list 3
AF88XPAD480-T4VSB-40K-3535F
Luminaire Data Sheet 4
Exterior Scene 1
Planning data 5
Luminaires (layout plan) 6
Luminaires (coordinates list) 7
3D Rendering 8
False Colour Rendering 9
Exterior Surfaces
60*30 Calculation Surface
Value Chart (E, Perpendicular) 10
Calculation Grid 1
Value Chart (E, Perpendicular) 11

Operator
Telephone
Fax
e-Mail

Residential Pickleball Court / Luminaire parts list

2 Pieces AF88XPAD480-T4VSB-40K-3535F Article No.:
Luminous flux (Luminaire): 52520 Im Luminous flux (Lamps): 52519 Im Luminaire Wattage: 477.2 W
Luminaire classification according to CIE: 100
CIE flux code: 659899100100
Fitting: $1 \times$ NICHIA 3535F 4000K (Correction Factor 1.000).

See our luminaire catalog for an image of the luminaire.

Operator
Telephone
Fax
e-Mail

AF88XPAD480-T4VSB-40K-3535F / Luminaire Data Sheet

See our luminaire catalog for an image of the luminaire.

Luminaire classification according to CIE: 100 CIE flux code: 659899100100

Luminous emittance 1:

Due to missing symmetry properties, no UGR table can be displayed for this luminaire.

Exterior Scene 1 / Planning data

Maintenance factor: 0.90, ULR (Upward Light Ratio): 0.5\%
Scale 1:462

Luminaire Parts List

No. Pieces
Designation (Correction Factor)
1
2 AF88XPAD480-T4VSB-40K-3535F (1.000)
Φ (Luminaire) [lm]
52520
Total: 105040
Φ (Lamps) [lm]
P [W]
52519
477.2

Total: 105037
954.4

Exterior Scene 1 / Luminaires (layout plan)

Scale 1: 337

Luminaire Parts List

No.
1
Pieces Designation
2 AF88XPAD480-T4VSB-40K-3535F

Exterior Scene 1 / Luminaires (coordinates list)

AF88XPAD480-T4VSB-40K-3535F

52520 Im, 477.2 W, $1 \times 1 \times$ NICHIA 3535F 4000K (Correction Factor 1.000).

No.				Position [ft]		Rotation $\left.{ }^{\circ}{ }^{\circ}\right]$
	X	Z	X	Y	Z	
1	-31.000	-38.500	20.000	0.0	-20.0	0.0
2	31.000	-38.500	20.000	0.0	-20.0	-180.0

Exterior Scene 1 / False Colour Rendering

Exterior Scene 1 / 60*30 Calculation Surface / Value Chart (E, Perpendicular)

$\underline{22}$	34	35	34	32	31	31	31	32	33	35	35	23
27	39	39	37	34	32	31	31	33	35	39	$\underline{41}$	27
29	38	37	34	30	30	29	29	30	32	36	40	29
30	37	34	30	28	28	27	27	28	30	34	37	30
29	40	36	32	30	29	29	30	30	34	37	38	29
27	41	39	35	33	31	31	32	34	37	39	39	27
23	35	35	33	32	31	31	31	33	34	35	34	$\underline{22}$
0.00												

Values in Footcandles, Scale 1:131
Position of surface in external scene: Marked point: (-30.000 ft, $-53.500 \mathrm{ft}, 0.000 \mathrm{ft})$

Grid: 13×7 Points
$\mathrm{E}_{\mathrm{av}}[\mathrm{fc}]$
$\mathrm{E}_{\text {min }}[\mathrm{fc}]$
22
$\mathrm{E}_{\text {max }}[\mathrm{fc}]$
u0
1.45
$E_{\text {max }} / E_{\text {min }}$
1.86

Exterior Scene 1 / Calculation Grid 1 / Value Chart (E, Perpendicular)

Values in Footcandles, Scale 1:247
Position of surface in external scene:
Marked point: ($-50.000 \mathrm{ft},-82.784 \mathrm{ft}$, 0.000 ft)

Grid: 25 Points
$\mathrm{E}_{\mathrm{av}}[\mathrm{fc}]$
0.23
$\mathrm{E}_{\text {min }}[\mathrm{fc}]$
0.06
$E_{\text {max }}[\mathrm{fc}]$
u0
0.52
3.83
$\mathrm{E}_{\text {max }} / \mathrm{E}_{\text {min }}$
8.67

